

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

AERONAUTICAL ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:	ne of the faculty: Dr. P Srinivasa Rao Departme		Aeronautical Engineering		
Regulation:	IARE - R16	Batch:	2016 - 2020 AAE515		
Course Name:	Heat Transfer	Course Code:			
Semester:	V	Target Value:	60% (1.8)		

Attainment of COs:

Course Outcome		Direct attainment	Indirect attainment	Overall attainment	Observation
CO 1	Recall the basic concepts of heat transfer fundamentals, mechanisms, temperature field and temperature gradient for various measures of heat transfer rate.	0.9	2.9	1.3	Attainment target is not reached
CO 2	Classify the general differential equation of heat conduction in Cartesian, Cylindrical and Spherical Coordinate System (Steady and Unsteady) to calculate temperature and heat flux.	0.9	2.9	1.3	Attainment target is not reached
CO 3	Explain different types of boundary conditions applied to heat conduction problems.	0.9	2.8	1.3	Attainment target is not reached
CO 4	Solve one-dimensional problems with different surfaces and geometries (fins) for which the temperature distribution and heat flow rates are calculated from Fourier's Law.	0.6	2.9	1.1	Attainment target is not reached
CO 5	Explain the concepts associated with transient heat conduction equation linked with time and temperature applied to environment sudden changes (various geographical location temperatures).	0.9	2.9	1.3	Attainment target is not reached
CO 6	Utilize the principles associated with convective heat transfer to formulate and calculate the dynamics of temperature field in fluid flow.	0.6	2.9	1.1	Attainment target is not reached

Action taken report:

CO 1: Digital content and assignments have to be increased.

CO 2: Remedial classes have been conducted.

CO 3: Remedial classes have been conducted.

CO 4: Digital content and videos given in classes for better understanding of concept.

CO 5: Application oriented problems may be given.

CO 6: Real time application may be better for attainment.

Course Coordinator

Mentor

Aeronauto Aeronauto Aeronauto Aeronauto Aeronauto Aeron Aeron Dundigal, Hyde